Hybridization of evolutionary Levenberg-Marquardt neural networks and data pre-processing for stock market prediction

نویسندگان

  • Shahrokh Asadi
  • Esmaeil Hadavandi
  • Farhad Mehmanpazir
  • Mohammad Masoud Nakhostin
چکیده

Artificial Intelligence models (AI) which computerize human reasoning has found a challenging test bed for various paradigms in many areas including financial time series prediction. Extensive researches have resulted in numerous financial applications using AI models. Since stock investment is a major investment activity, Lack of accurate information and comprehensive knowledge would result in some certain loss of investment. Hence, stock market prediction has always been a subject of interest for most investors and professional analysts. Stock market prediction is a challenging problem because uncertainties are always involved in the market movements. This paper proposes a hybrid intelligent model for stock exchange index prediction. The proposed model is a combination of data preprocessing methods, genetic algorithms and Levenberg–Marquardt (LM) algorithm for learning feed forward neural networks. Actually it evolves neural network initial weights for tuning with LM algorithm by using genetic algorithm. We also use data pre-processing methods such as data transformation and input variables selection for improving the accuracy of the model. The capability of the proposed method is tested by applying it for predicting some stock exchange indices used in the literature. The results show that the proposed approach is able to cope with the fluctuations of stock market values and also yields good prediction accuracy. So it can be used to model complex relationships between inputs and outputs or to find data patterns while performing financial prediction. 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting the U.S. Stock Market via Levenberg-Marquardt and Haken Artificial Neural Networks Using ICA&PCA Pre-processing Techniques

Artificial neural networks (ANN) is an approach to solving different tasks. In this paper we forecast U.S. stock market movements using two types of artificial neural networks: a network based on the Levenberg-Marquardt learning mechanism and a synergetic network which was described by German scientist Herman Haken. The LevenbergMarquardt ANN is widely used for forecasting financial markets, wh...

متن کامل

Investigation of Some Technical Indexes in Stock Forecasting Using Neural Networks

Training neural networks to capture an intrinsic property of a large volume of high dimensional data is a difficult task, as the training process is computationally expensive. Input attributes should be carefully selected to keep the dimensionality of input vectors relatively small. Technical indexes commonly used for stock market prediction using neural networks are investigated to determine i...

متن کامل

Stock Market Modeling Using Genetic Programming Ensembles

The use of intelligent systems for stock market predictions has been widely established. This chapter introduces two Genetic Programming (GP) techniques: Multi-Expression Programming (MEP) and Linear Genetic Programming (LGP) for the prediction of two stock indices. The performance is then compared with an artificial neural network trained using Levenberg-Marquardt algorithm and Takagi-Sugeno n...

متن کامل

Evolutionary Multiobjective Optimization Approach for Evolving Ensemble of Intelligent Paradigms for Stock Market Modeling

The use of intelligent systems for stock market predictions has been widely established. This paper introduces a genetic programming technique (called Multi-Expression programming) for the prediction of two stock indices. The performance is then compared with an artificial neural network trained using Levenberg-Marquardt algorithm, support vector machine, Takagi-Sugeno neuro-fuzzy model and a d...

متن کامل

Prediction of the changes in physicochemical properties of key lime juice during IR thermal processing by artificial neural networks

Thermal processing of the key lime juice leads to the inactivation of pectin methylesterase (PME) and the degradation of ascorbic acid (AA). These changes affect directly the cloud stability and color of the juice. In this study, an artificial neural network (ANN) model was applied for designing and developing an intelligent system for prediction of the thermal processing effects on the physico...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2012